Assessment & Intervention of Feeding in the Young Infant
Part I
DARS ECI Webinar Series
Presented by: Jenny McGlothlin, MS, CCC/SLP
September 20, 2012

Considerations for Working with Young Infants

FEEDING SPECIFICS
Why not wait?

• Feeding is a developmental process
• Early experiences are key to long-term success
• When interrupted, children may demonstrate
 – Oral sensorimotor dysfunction
 – Undernutrition (FTT)
 – Poor growth
 – Delayed development
 – Poor academic achievement
 – Psychological problems
 – Loss of overall health and well-being

• Oral sensorimotor function, swallowing, & respiration coordination are important processes that relate to development of normal feeding, eating, and speech motor skills

Red Flags

• Oral-motor dysfunction
• Dysphagia
• Medical Hx of Dx leading to feeding disruption
 – BPD, RDS, cardiac, neuro impairment, GERD
• Supplemental tube feedings
• Failure to match diet/quantity to dev. age
• Poor meal scheduling
• Poor/inappropriate parental feeding strategies
Factors that Limit Feeding Skill Development

– **Structural limitations**

 • Oral-Facial (Choanal Atresia, Cleft Lip/Palate, Micrognathia, Macroglossia, Dental Malocclusions, Short Lingual Frenulum)
 • Gastrointestinal (Esophageal Stricture, Pyloric Stenosis, Esophageal Atresia, Anal Atresia, Tracheoesophageal Fistula, Congenital Diaphragmatic Hernia, Hiatal Hernia, Short Bowel Syndrome)
 • Respiratory and Cardiac (Tracheomalacia, Laryngomalacia, Pulmonary Atresia/Stenosis, Aortic stenosis, etc.)

– **Physiological limitations**

 • Oral-Pharyngeal (aspiration)
 • Gastrointestinal (Gastroesophageal Reflux-GER, Esophagitis, Esophageal Dysmotility, Achalasia, Stomach Motility disorders, Delayed Gastric Emptying, Dumping Syndrome, Chronic Intestinal Pseudo-obstruction, Hirschsprung’s Disease, Diarrhea, Constipation)
 • Respiratory-Cardiac (Bronchopulmonary Dysplasia, Scoliosis/Kyphosis, Hypotonia/Hypertonia, Congestive Heart Failure)
Factors that Limit Feeding Skill Development

– Environmental limitations
 • Circumstances that impact child’s feeding and mealtime skills related to socioeconomic or mental-health issues of the family
 • Lack of resources (financial, personal)
 • Frequent moving between cities results in inconsistent healthcare
 • Inconsistent mealtimes and caregiving (lack of bonding with a primary caregiver, maternal depression, parents’ own issues with food)

Effects of Intervention

• What we know:
 – Infant feeding is a function of both maturation & experience
 – Primitive mechanisms support early feedings but are then integrated, and feeding is solely a learned skill beginning at 4 months
 – Medically fragile infants are most at risk for feeding problems
 – Immaturity and medical instability increase likelihood of aversive feeding experiences
 – Experience directly builds brain pathways
Effects on Outcomes

• We make a difference!
 – To the INFANT:
 • By understanding development so that we adjust our expectations
 • By supporting organization of physiological, motor and behavioral states so that infants can interact and attend to experiences
 • By ensuring experiences are as pleasurable as possible
 – To the FAMILY:
 • By supporting them so they can nurture their infant

(Erin Sundseth Ross, Ph.D.)

Why focus on feeding?

• In children with no known medical causes for failure to thrive or undernutrition, significant numbers were found to have oral-motor dysfunction that resulted in sucking, chewing, or swallowing difficulties

The impact of early feeding on later feeding skills is huge!

(Reilly, Skuse, Wolke, & Stevenson, 1999)
Outcomes related to feeding

Preterm infants

- Many infants and children born preterm will require services for years to come, particularly for feeding
 - First, to learn to successfully feed orally
 - Later, to make a full transition to their families’ diet
 (Msall & Tremont, 2002)
- Approximately 31% of NICU graduates will experience feeding difficulties before one year of age
- 40% of children referred to an outpatient specialty clinic for feeding or growth concerns are former preemies (Hawdon, et al, 2002)

Outcomes related to feeding

- An increasing number of those born preterm are referred for significant and persistent feeding problems:
 - Eating only limited types of food, difficulty transitioning to textured foods, food refusal
 (Field et al, 2003; Hawdon et al, 2000; Rommel et al, 2003; Wood et al, 2003)
Interactions with the Family

• Points to remember:
 – Be observant for high levels of stress, post-partum depression, pressure from family members
 – Ask open-ended questions to get clues as to the problem.
 – Parents may not know what to ask. Allow for misunderstanding.
 – Train parents/caregivers as primary feeders
 – Work with them to help their child so every feeding can be therapeutic, not just the ones conducted by the therapist
 – Take the time to treat the entire family to ensure support of proper feeding techniques by the primary feeder
Effect of Overall Tone & Gross Motor Development on Feeding

• Looking at feeding and oral motor skills within the context of the whole body

☐ Everything is connected!
☐ Issues and patterns that affect normal motor development influence the mouth
☐ Development of stability: external sources of support to more internally controlled stability, becomes more dynamic

Effect of Overall Tone & Gross Motor Development on Feeding

• Looking at feeding and oral motor skills within the context of the whole body

☐ Mobility develops from a proximal base of stability, moving toward more distal control
 – Refined development of distal oral motor skills is affected if proximal stability is an issue
 – Oral stability is dependent upon development of neck and shoulder girdle stability, which are dependent upon trunk and pelvic stability
Effect of Overall Tone & Gross Motor Development on Feeding

• Looking at feeding and oral motor skills within the context of the whole body

□The jaw is proximal to the distal lips, cheeks, and tongue
 – The ability to stabilize the jaw is a prerequisite for development of skilled and refined tongue and lip movements

Effect of Overall Tone & Gross Motor Development on Feeding

• Key points:
 – STABILITY (proximal) before MOBILITY (distal)
 – Stability- related to muscle tone & coordinated contraction of muscles
 – Mobility- performance of the motor acts
 – Normal movement = balance between stability and mobility
Effect of Overall Tone & Gross Motor Development on Feeding

• Hypotonia
 – Poor postural stability = decreased control of trunk, shoulders, head & neck
 – Tries to compensate by “fixing” in a position or hyperextending (e.g., pulling back shoulders & extending jaw)
 – Tires easily and will cease feeding before full

Effect of Overall Tone & Gross Motor Development on Feeding

• Hypertonia
 – All movements against increased tension/resistance of muscles
 – Tends to fix spine & limit movements to small range
 – Tire easily due to increased work

– HYPER or HYPO-tonicity = WEAKNESS
Prerequisites to Normal Infant Feeding

☐ Rhythmicity

- Rhythm is the most consistent characteristic of feeding patterns during the first three months of life

- Newborns suck with a rapid, efficient, and regular movement

- Irregularities in the sucking rhythm have been identified as one indicator of brain dysfunction or damage in newborns

- Regular rhythm with a speed of 1 act/cycle per second is common in sucking and chewing patterns: tempo & rhythm of feeding patterns is similar to heel-to-toe gait in walking and the resting tempo of the heartbeat

Prerequisites to Normal Infant Feeding

• Sensory System

- Normal development of the infant’s sensory systems has a major impact on oral sensorimotor skills

- Mouth & hands have the highest number of sensory receptors per square inch of any other part of the body
 • Sensory receptors of the mouth are the earliest to emerge in fetal development
 • After birth, the infant seems to explore and learn predominantly by bringing everything to the mouth
 • Early mouthing activities provide the infant with abundant oral sensory input
Prerequisites to Normal Infant Feeding

Sensorimotor Development

- Normal sensorimotor development
 - Based on a series of themes that fit most babies and an abundance of variations that fit each individual child

- Variations in movement experiences and opportunities are provided by caregivers

- Variations in feeding skills are based on availability of experience and child’s unique characteristics

- Critically important for children to develop flexibility within their sensorimotor system that enables them to adjust to small variations in their environment

Coordination of Suck/Swallow/Breathe

- Breathing
 - Infants must stop breathing briefly with every swallow, lasting about one second
 - No agreement about when in respiratory cycle infant stops breathing
 - During continuous sucking, have a decrease in overall respiratory rate & lengthen expiratory phase /shorten inspiratory phase
 - Results in reduced ventilation > infant changes to intermittent sucking pattern
Coordination of SSB

• Sucking & Swallowing
 – Swallowing pattern related to flow and amount of liquid
 • Faster rate = swallow more often
 • Greater pressure suck = larger bolus & infant may have to adjust timing for initiating swallow

 – One suck per second, 1:1 ratio for suck:swallow
 – As infant nears 4-6 months, ratio may be 2-3:1
 – Newborn (healthy) baby – suck pattern will range from 10-30 sucking burst with 1:1:1 ratio of SSB

Reflex Integration

• Many reflexes present in full-term infant
• Integration occurs with maturity of cortical control
• Integration is not inhibition, but rather building of foundation for further refined skills
Normal Reflexes & Cranial Nerves

- Rooting
- Gag
- Phasic Bite
- Tongue Protrusion
- Transverse Tongue
 Suckling
- Swallowing

- V, VII, XI, XII
- IX, X
- V
- XII
- V, VII, IX, XII
- V, VII, IX, X, XII

Normal Reflexes & Integration

- Rooting
- Gag
- Phasic Bite
- Tongue Protrusion
- Transverse Tongue
 Suckling
- Swallowing

- 3-6 months
- Diminishes at 6 months
- 9-12 months
- 4-6 months
- 6-8 months
- Remains in adults
Nutritive vs. Non-Nutritive Suckling

NUTRITIVE
- At the beginning of a feeding, infant sucks with continuous burst, then changes to more intermittent sucking bursts
- One suck per second
- Young (1-3 mos) infant swallows with 1:1 ratio, with 2-3:1 ratio toward end of feeding. Older infant ratio moves to 2-3:1 consistently due to larger oral cavity and decrease in fatty pads.

NON-NUTRITIVE
- Pattern is much more repetitive than with nutritive suckling
- Six sucks per second
- Ratio of 6-8:1 sucks to swallows

Compression vs. Suction

Compression
- Positive pressure phase
- Hard palate and tongue
- Precedes suction

Suction
- Negative pressure phase
- Tongue latches with proper contact on nipple. Closed off system- jaw drops down and pulls fluid out (vacuum)

Integration of compression AND suction leads to efficient suck
Anatomical Supports

- Oral space is filled by the tongue, supporting compression/suction of breast or bottle nipple
- Oral structures are vertically compressed as well as the neck, shoulders, and head
- Buccal pads (fatty pads) provide stability
- Soft palate and epiglottis are in contact in posterior portion of oral cavity
- Epiglottis at C2, drops to C5-7 (3-4 mos)
- Larynx = 1/3 the size of adult

Tutor & Gossa, 2011

Cues for Readiness

- At least 34 weeks adjusted gestational age
- In quiet alert state for at least 5 minutes
- Shows “hunger cues”
 - Hands to mouth
 - Smacking
 - Tongue thrusting
 - Rooting
 - Non-nutritive sucking during gavage feeds
 - Crying (late hunger cue)
- Shows signs of physiologic stability such as:
 - Smooth and regular respiratory rate
 - Stable heart rate
 - Successfully demonstrates self regulatory behaviors
- Wakes before feeding time
- Demonstrates a sustained, rhythmical non-nutritive suck
Developmental Considerations

• Where is baby in process of development?
 – Development occurs in predictable fashion but on an individual timeline within parameters
 – Development is negatively influenced by medical comorbidities
 – Development influences the oral, pharyngeal, and esophageal phases of swallowing
 – *Every baby is an individual; you can’t go by gestational week (if the baby was born early).*

Developmental Considerations of Oral Phase

• Compression precedes suction (mouthing nipple)
• Integration of compression/suction = efficient suck
• If lack suction, likely one of following:
 – Developmentally in compression-only sucking pattern (immaturity)
 – Attempt to manage respiratory component of SSB by dropping suction
 – Neurologic/structural component
 – TEST? If can hold a pacifier in their mouth, are using suction- can rule out a neuro component

Mizuno et al., 2007; 2006; 2005; Craig et al., 2000; Eishima, 1991
What We Know

- Infant feeding is a function of both maturation and experience
- Primitive mechanisms support early feedings but are integrated, and *feeding is solely a learned skill beginning at 4 months*
- Medically fragile infants are most at risk for feeding problems
- Immaturity and medical instability increase likelihood of aversive feeding experiences
- Experience *directly builds brain pathways*
 Delaney & Arvedson, 2008

Feeding Skills by Age

- **0-3 Months**: physiological flexion, suckle/swallow reflex, tongue, jaw & lips work as one unit, tongue movement in/out pattern, tongue is cupped to provide channel for backward movement of liquid, rooting reflex, phasic bite reflex, gag reflex
Feeding Skills by Age

• **4-6 Months:** suckle in anticipation of spoon, munch-chew pattern (5-6 mo), tongue & jaw move as one unit, poor coordination of suck, swallow, breathing, rooting decreased by 5 months, phasic bite reflex decreased by 5 months, gag reflex

Feeding Skills by Age

☐ **7-9 Months:** mixed tongue movements in/out & up/down, active lip movements for closure on bottle & cleaning spoon, unstable jaw during cup drinking, tongue protrusion on swallow, some jaw separation from tongue and lip during bite, transfer of food from side to center/center to side, lip closure for swallowing semi-solids, gag is slightly less sensitive
BREASTFEEDING 101

Anatomy & Physiology of Breastfeeding: Infancy & Puberty

• Infancy
 – Inverted nipples
 – Minimal glandular tissue

• Puberty
 – Breasts grow
 – Fat deposited
 – Milk ducts branch and grow
 – By age 20, breasts are finished growing, with exception of during pregnancy
Anatomy & Physiology of Breastfeeding: Pregnancy

- Breasts grow
 - Milk glands enlarge and by 5 months begin to produce colostrum
- Nipple/Areola darkens and enlarges
- Nipple sensitivity increases
- More branching of milk ducts
- Increased growth of milk-making cells
- Breasts ready to make milk by 16th week of pregnancy
- Contents of breast milk include:
 - Protein
 - Fat
 - Cholesterol
 - Iron
 - Calcium
 - Carbohydrates
 - Vitamins & Minerals

How Breastfeeding Works

- Stages of Milk
 - Colostrum
 - Transition Milk
 - Mature Milk
- Foremilk vs. Hindmilk
- Lactogenesis II- increase in prolactin levels to stimulate milk making cells (alveolar cells)
- The “Let Down” or Milk Ejection Reflex
- SUPPLY & DEMAND
Latch-On & Positioning

• Good Latch
 – Flanged lips
 – Cheeks rounded
 – Circular movement of jaw
 – Audible swallowing
 – Breast Compression
 – Non-distorted nipple
 – Emptying of breast
 – Infant appears satisfied/full

Latch-On & Positioning

• Bad Latch
 – Lips rolled in
 – Breast slides in and out of mouth
 – Baby only latches onto nipple only
 – Flattened/creased nipple
 – No breast changes after feeding
 – Inadequate stools and voiding
Positioning

• Cradle Hold

• Cross-Cradle Hold

Positioning

• Football Hold

• Side-Lying

• Australian Hold
Feeding Patterns

• Signs of hunger
• Sleep patterns
• How often do breast fed babies feed?
 – Demand vs. schedule feeding
 – First month (8-12x), 1-2 mos (7-9x)
 – Every 1½-3 hours, never longer than 4 hours
• Number of wet diapers/stools
 – 4-6 wet diapers, regular stools (3-4x per day, then less)
• Growth spurts (2-3 wks, 4-6 wks)

Common Problems that Impact Breastfeeding

• Sore Nipples
• Engorgement
• Flat/Inverted Nipples
• Plugged Ducts
• Mastitis
Additional Information

- Pumping/Storage
- WIC
- Medications
- Donating breastmilk/Milk banks

Storage of Breastmilk

<table>
<thead>
<tr>
<th></th>
<th>Temperature</th>
<th>Storage Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshly expressed milk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm room</td>
<td>73-77°F / 23-25°C</td>
<td>4 hours</td>
</tr>
<tr>
<td>Room temperature</td>
<td>66-72°F / 19-22°C</td>
<td>6-10 hours</td>
</tr>
<tr>
<td>Insulated cooler / icepacks</td>
<td>59°F / 15°C</td>
<td>24 hours</td>
</tr>
<tr>
<td>Refrigerated Milk (Store at back, away from door)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerator (fresh milk)</td>
<td>32-39°F / 0-4°C</td>
<td>8 days (ideal: 72 hrs)</td>
</tr>
<tr>
<td>Refrigerator (thawed milk)</td>
<td>32-39°F / 0-4°C</td>
<td>24 hours</td>
</tr>
<tr>
<td>Frozen Milk (Do not refreeze! Store at back, away from door/sides)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freezer compartment inside refrigerator (older-style)</td>
<td>Varies</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Self-contained freezer unit of a refrigerator/freezer</td>
<td>Varies: 0°F / -18°C</td>
<td>3-4 months</td>
</tr>
<tr>
<td>Separate deep freeze</td>
<td>0°F / -18°C</td>
<td>12 months (ideal: 6 months)</td>
</tr>
</tbody>
</table>

These guidelines are for milk expressed for a full-term healthy baby. If baby is seriously ill and/or hospitalized, discuss storage guidelines with baby’s doctor.

To avoid waste and for easier thawing & warming, store milk in 1-4 ounce portions.
Date milk before storing. Milk from different pumping sessions/days may be combined in one container – use the date of the first milk expressed.
Breastmilk is not spoiled unless it smells really bad or tastes sour.
QUESTIONS?