UPDATES ON THE CARE AND GENETICS OF CHILDREN WITH NOONAN SYNDROME

Pilar L. Magoulas, MS, CGC
Assistant Professor, Certified Genetic Counselor
Department of Molecular and Human Genetics
Baylor College of Medicine / Texas Children’s Hospital
Houston, TX
Outline

- Noonan syndrome clinical features
- Basics of genetics
- Genetic basis of Noonan syndrome
- Management of individuals with Noonan syndrome
Noonan syndrome

- Dr. Jacqueline Noonan first described the condition in 1963.
- She recognized non-cardiac similarities in some of her patients, such as short stature, chest deformities, and similar facial features.
- Incidence is between ~1 in 1000 and 1 in 2500.
- Most are new cases, but ~30-75% will have a parent with NS.

Photo courtesy of A. Lin
Noonan syndrome - Clinical Features

- Dysmorphic facial features
- Inverted triangular shaped head/face
- Broad or webbed neck
- Chest wall deformities (pectus carinatum and/or pectus excavatum)
- Undescended testes in males
- Cardiac involvement (80-90%)
 - Pulmonic stenosis (PS) and atrial septal defect (ASD) (70-80%), other valve dysplasia
 - Hypertrophic cardiomyopathy (20-75%)
 - Arrhythmia (abnormal EKG in ~50%)
Noonan syndrome – Facial features

- Shows considerable change with age
- Most striking in the newborn period and middle childhood
- Most subtle in the adult
- Key features:
 - hypertelorism, epicanthal folds, down-slanting palepebral fissures, ptosis
 - low-set, posteriorly rotated ears
 - vivid blue or blue-green irises

NS – Facial features over time

FIGURE 1
A. Patient with NS at (from left to right) 10 days, 6 months, and 2 years of age. B. Patient with NS at (from left to right) 4 months and 1, 2, 5, 8, and 21 years of age.

Romano et al. 2010
NS and lymphatics

- Lymphatic abnormalities have been described and may be localized or widespread, prenatal, and/or postnatal.

- Dorsal limb lymphedema is most common.

- Prenatal features suggestive of NS: transient or persistent cystic hygroma, polyhydramnios, and (rarely) hydrops fetalis.
Noonan syndrome - Growth

- Growth
 - Short stature is common
 - Birth length is usually in normal range
 - Height usually follows along the 3rd centile
 - Average adult height in males is 161 cm (5'3") and females is 4' 11"
NS - Female growth curve
Growth hormone in Noonan syndrome

- Growth hormone (GH) deficiency has been documented in some individuals with Noonan syndrome.
- Several studies have evaluated GH therapy in those with NS.
- Growth rate in the first 6-12 months of therapy was highest.
 - i.e. Height increase of ~8.4 cm per year in first year vs. 4.4 cm per yr in untreated patients.
- Delayed puberty is common in males and females
Hematologic abnormalities

- Myeloproliferative disorder can be seen in infants with NS (leukocytosis, thrombocytopenia, hepatosplenomegaly).

- Juvenile myelomonocytic leukemia (JMML) is often caused by somatic mutations in PTPN11.
 - *Individuals with NS and PTPN11+ have a predisposition JMML.*
 - Certain exons may be associated with greater risk.
 - *JMML in NS tends to run a more benign course than non-NS JMML.*

- Approximately 1/3 of individuals with NS have a coagulation (blood clotting) defect.
Noonan syndrome - Development

- Development:
 - Early developmental milestones may be delayed.
 - Approximately 25% will have learning disabilities, with 10-40% requiring special education.
 - Non-verbal performance is usually better than verbal performance.
Inheritance of Noonan syndrome

- Most individuals with NS are the first person in their family to have NS.
- However, about 30-70% of individuals with NS will have a family history of NS (a parent who also has NS).
- Noonan syndrome is inherited in an “Autosomal dominant” manner.
- If an individual has NS, there is a 50% chance that they will pass on the non-working gene to each child.
- If a parent does not have NS, the chances of having another child with NS will be very low (<1%).
GENETICS!
Chromosomes
• Our chromosomes are located in the nucleus (middle) of all of our cells.
• Chromosomes are composed of strands of DNA that are tightly coiled together.
• DNA is composed of 4 letters (similar to letters of the alphabet) A, C, T, G that makes up a gene which codes for a protein.
• Since we have 2 copies of every chromosome, we have 2 copies of every gene.
• If there is a change in a gene (either a missing letter, changed letter, missing gene, missing part of the chromosome – missing lots of genes) – this can effect normal growth and development.
• The effect of the mutation often depends on if 1 gene mutated or both genes.
Genetics

- Genome
- Chromosome
- Gene
- DNA – A, C, T, G
- Encyclopedia
- Volume
- Sentence
- Alphabet – A, B, C, D...
Genetic variants

- We ALL have genetic variants in our genes – they are what make us unique!
- Some changes are “benign” and do not cause any problems.
- Some changes are more serious and can cause problems with what that particular gene is supposed to do.
 - These are often called “Pathogenic” variants.
Pathogenic variants

Original

THE CAT HAD RED FUR AND RAN FAR.

- Deletion
 THE CAT HAR EDF URA NDR ANF AR.
- Missense
 THE CAT HAD RED FER AND RAN FAR.
 THE MAT HAD RED FUR AND RAN FAR.
- Nonsense
 THE CAT HAD RED.
Variants of unknown significance

- If a gene change is found but has NOT been seen before or reported in the medical literature, then it can make it very hard to interpret the results.
- These are called “variants of uncertain significance” (VUS)
- Testing other family members may help us interpret the results.
- If a parent or unaffected sibling has the same change, then it is probably benign.
- If neither parent has the same change, then it might be pathogenic.
Noonan syndrome (NS) Genes

- To date, there are ~13 genes thought to be causative of NS or “Noonan-like” syndrome.
- The most common gene associated with NS is called \textit{PTPN11}.
- Approximately 50% of individuals with a clinical diagnosis of NS will have changes in this gene.
- Some individuals may have features of NS, but test NEGATIVE (normal).
 - \textit{If so, there may be other genes that cause NS that have not been identified yet.}
 - \textit{Or there may be a change in another gene that is closely related to NS (such as CFC syndrome, NF1, or Costello syndrome).}
Summary of genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Phenotype(s)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTPN11</td>
<td>NS</td>
<td>50%</td>
</tr>
<tr>
<td>SOS1</td>
<td>NS</td>
<td>10-13%</td>
</tr>
<tr>
<td>RIT1</td>
<td>NS</td>
<td>9%</td>
</tr>
<tr>
<td>RAF1</td>
<td>NS</td>
<td>3-7%</td>
</tr>
<tr>
<td>KRAS</td>
<td>NS, CFC</td>
<td><5%, <5%</td>
</tr>
<tr>
<td>NRAS</td>
<td>NS</td>
<td>Unknown (<1%)</td>
</tr>
<tr>
<td>SOS2</td>
<td>NS</td>
<td>Unknown</td>
</tr>
<tr>
<td>SHOC2</td>
<td>Noonan-like</td>
<td>Unknown</td>
</tr>
<tr>
<td>CBL</td>
<td>Noonan-like</td>
<td>Unknown (<1%)</td>
</tr>
<tr>
<td>A2ML</td>
<td>Noonan-like</td>
<td>Unknown (<1%)</td>
</tr>
<tr>
<td>LZTR1</td>
<td>Noonan-like</td>
<td>Unknown</td>
</tr>
<tr>
<td>RASA2</td>
<td>Noonan-like</td>
<td>Unknown (<1%)</td>
</tr>
<tr>
<td>RRAS</td>
<td>Noonan-like</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
in-frame three-nucleotide PTPN11 deletion (p.Gly60del)
Lentigines, EEG abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, deafness
Differential diagnosis - CFC syndrome

- ~200-300 individuals worldwide
 - Prevalence in Japan: ~1 in 810,000
- Moderate to severe ID
- Relative macrocephaly
- Dysmorphic facial features
 - Bitemporal narrowing
 - Down-slanting eyes w/ epicanthic folds, ptosis
 - Flattened nasal bridge w/ upturned nose
 - Posteriorly rotated ears
 - Coarse facial features
- Cardiac abnormality in ~75%
 - PS +/- ASD, HCM: 40%
- Hair
 - Sparse and curly, wooly or brittle
 - Sparse or no eyebrows (67%)

Photos courtesy of CFC International
Differential diagnosis - Costello syndrome

- Moderate to severe ID
- Craniofacial features
 - Relative macrocephaly
 - Coarse features, full cheeks, full lips, large mouth
 - Curly or sparse, fine hair
- Deep, hoarse or whispery voice
- Loose, soft skin with increased pigmentation
- Deep palm and foot creases
- Papillomata of face (72%) - typically absent in infancy but may appear in childhood
- Cardiac abnormalities in 80%
 - Congenital heart defects: 20%, HCM: 60%, arrhythmias: 40%
- Tumor risk – 15%
Increased cellular proliferation – increase risk of tumors, hyperkeratosis, HCM. Proto-oncogenes.
The extra-cellular mitogen binds to the membrane ligand. This allows Ras (a GTPase) to swap its GDP for a GTP. It can now activate MAP3K (e.g., Raf), which activates MAP2K, which activates MAPK. MAPK can now activate a transcription factor, such as myc.

→ Increased cellular proliferation – increase risk of tumors, hyperkeratosis, HCM. Proto-oncogenes
Noonan syndrome guidelines

Noonan Syndrome: Clinical Features, Diagnosis, and Management Guidelines

abstract
Noonan syndrome (NS) is a common, clinically and genetically heterogeneous condition characterized by distinctive facial features, short stature, and congenital heart defects.

- Multidisciplinary care:
 - Cardiology
 - Endocrine
 - GI/feeding
 - Developmental
 - Neurology
 - Speech/OT/PT
 - Hematology
 - Genetics
Noonan syndrome - Management

<table>
<thead>
<tr>
<th>System</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular issues</td>
<td>Cardiac evaluation at the time of diagnosis, including an electrocardiogram and echocardiogram. Regular follow-up if cardiac abnormalities detected</td>
</tr>
<tr>
<td>Growth and endocrine issues</td>
<td>Weigh and measure regularly by PCP on NS growth charts. If growth failure, refer to endocrine Therapeutic interventions as indicated (GH for growth failure, thyroid hormone replacement for hypothyroidism, estrogen or testosterone for pubertal delay)</td>
</tr>
<tr>
<td>Renal and genitourinary</td>
<td>All individuals should have a kidney ultrasound at the time of diagnosis. Orchiopexy should be performed by the age of 1 year if testicles remain undescended at that time</td>
</tr>
<tr>
<td>Gastrointestinal issues</td>
<td>Consultation for feeding difficulties/recurrent vomiting. Further testing as indicated (upper-gastrointestinal series, upper endoscopy, pH studies, etc) Therapeutic interventions as indicated/</td>
</tr>
<tr>
<td>System</td>
<td>Management</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Neurological, cognitive, and behavioral issues</td>
<td>Developmental screening annually. Complete neuropsychological testing if screening result is abnormal. Evaluations for speech pathology, PT, and OT if delays in speech, gross motor, and fine motor skills. Early-intervention programs beginning in infancy if delays noted. Regular, detailed developmental evaluations throughout childhood. IEP for school-aged children. EEG and/or Brain MRI and referral to neurology if seizures or other neurologic problems suspected.</td>
</tr>
<tr>
<td>Eye and ear issues</td>
<td>Detailed eye examination in infancy and/or at diagnosis. Hearing test in infancy and/or at diagnosis with annual hearing test throughout early childhood.</td>
</tr>
<tr>
<td>System</td>
<td>Management</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Orthopedic and dental issues</td>
<td>Annual examination of chest and back, radiography if abnormal</td>
</tr>
<tr>
<td></td>
<td>Careful oral exam at each visit</td>
</tr>
<tr>
<td></td>
<td>Dental referral between the ages of 1 and 2 y and yearly visits thereafter</td>
</tr>
<tr>
<td>Lymphatic issues</td>
<td>Referral of those with peripheral lymphedema to specialty lymphedema clinics</td>
</tr>
<tr>
<td>Anesthesia risk</td>
<td>Individuals with NS should be considered at standard risk for malignant hyperthermia when receiving general anesthesia</td>
</tr>
</tbody>
</table>
Comprehensive care for Noonan syndrome and the RASopathies

- Individually, they may be rare, but collectively, they are common (~1 in 1300).
- Need centers or clinics that specialize in the care of these patients given the vast array of complex medical and developmental problems that they can have.
- Multidisciplinary care is essential!
- GI, Feeding, Neurology, Endocrine, Orthopedics, Ophthalmology, ENT, Cardiology, Hematology/oncology, Renal, Developmental, Speech/OT/PT, ECI, Social work, Genetics, etc...
The NF/Ras Pathway Clinic provides prenatal, pediatric, and adult care with comprehensive referral services to appropriate specialists in the UCSF NF Ras Pathway Referral Network. This group consists of more than 50 UCSF specialists who have expertise in Ras pathway disorders, related to genetic mutations that cause certain cancers, skeletal muscle abnormalities and other disorders.

Our clinic provides health care support and management for patients who have or are at risk for having a Ras pathway disorder. These include:

- Neurofibromatosis type 1
- Neurofibromatosis type 2
- NF1
- Schwannomatosis
- Capillary malformation–AI malformation
- Noonan syndrome
- LEOPARD syndrome
- Costello syndrome
Neurofibromatosis and RASopathy Center

The Neurofibromatosis and RASopathy Center, a multidisciplinary clinic of the Genetics Center, is one of only a few designated centers nationwide that provides diagnosis, education, counseling, treatment and care coordination services to children and adults with neurofibromatosis and other disorders related to the RAS pathway.

Our specialists diagnose and treat the following conditions:
- Capillary malformation-arteriovenous malformation syndrome
- Cardiofacial-cutaneous syndrome
- Cowden syndrome
- Legius syndrome
- Multiple lentigines syndrome (formerly known as LEOPARD syndrome)
- Neurofibromatosis type 1
- Neurofibromatosis type 2
- Noonan syndrome
- Schwannomatosis
- Tuberculous sclerosis complex
Pediatric Genetic Counseling

- Provide counseling regarding the diagnosis and genetic basis of the condition.
- Review the features, treatment, and management of the condition.
- Review family history and provide risk assessment.
- Review testing and future reproductive options.
- Offer testing for other relatives/spouses.
- Provide information, support, and resources to the family.
- Address psychosocial implications of diagnosis on self and other family members.
Summary

- Noonan syndrome is one of nine conditions called “RASopathies”
- Common features of NS include:
 - Musculoskeletal system, cardiac, GI, feeding, and growth, neurocognitive, distinct facial features, and lymphatic abnormalities
- Noonan syndrome is caused by mutations in 1 of ~12 genes (and counting...)
- Individuals require multidisciplinary and comprehensive care.
Questions?

Contact Info:
Pilar L. Magoulas, MS, CGC
Ph: 832-822-4288
Email: Magoulas@bcm.edu