Care for Children with Rare Metabolic Disorders

Lindsay C. Burrage, M.D., Ph.D.
Department of Molecular and Human Genetics
Baylor College of Medicine
Objectives

• Understand basic principles of management of inborn errors of metabolism

• Describe 2 metabolic genetic disorders detected by newborn screening

• Discuss the multidisciplinary approach to managing care for affected children
What is an Inborn Error of Metabolism?

• 1902: Archibald Garrod described Alkaptonuria

• Now, > 300 disorders with new disorders still being discovered!
• Deficient enzyme activity or deficient transport of a substrate

• Toxic products accumulate (B, maybe A)

• Important products become deficient
• Limit substrates that produce toxic products (A, B)
 - E.g. *dietary manipulations*
• Limit substrates that produce toxic products (A,B)
• Enhance excretion of toxic products (B)
 - e.g., Medications that bind toxic products and lead to excretion in the urine
• Limit substrates that produce toxic products (A,B)
• Enhance excretion of toxic products (B)
• Prevent production of toxic products (B)
 - e.g., *Medication that blocks upstream enzyme 1*
General Principles of Management

- Limit substrates that produce toxic products (A,B)
- Enhance excretion of toxic products (B)
- Prevent production of toxic products (B)
- Provide deficient products (C or D)
 - E.g. *amino acid supplementation*
General Principles of Management

- Limit substrates that produce toxic products (A,B)
- Enhance excretion of toxic products (B)
- Prevent production of toxic products (B)
- Provide deficient products (C or D)
- Provide vitamins/cofactors for enzymes
 - e.g., vitamin or cofactor supplementation
General Principles of Management

- Limit substrates that produce toxic products (A,B)
- Enhance excretion of toxic products (B)
- Prevent production of toxic products (B)
- Provide deficient products (C or D)
- Provide vitamins/cofactors for enzymes
- Give enzyme back (*e.g.* enzyme replacement therapy)
Broad Categories of IEM

- Amino Acid Disorders
- Urea Cycle Disorders
- Organic Acid Disorders
- Transport Disorders
- Vitamin Disorders
- Disorders of glucose metabolism
- Fatty acid oxidation disorders
- Mitochondrial Disorders
- Lysosomal Storage Disorders
- Peroxisomal Disorders
Broad Categories of IEM

- Amino Acid Disorders
- Urea Cycle Disorders
- Organic Acid Disorders
- Transport Disorders
- Vitamin Disorders
- Disorders of glucose metabolism
- Fatty acid oxidation disorders
- Mitochondrial Disorders
- Lysosomal Storage Disorders
- Peroxisomal Disorders
Newborns are screened for a list of genetic disorders in the first days of life so that management can be initiated in treatable disorders prior to the onset of signs or symptoms of the disorder.

Important to note that not all metabolic disorders are included on newborn screening.
Newborn Screening: Two examples

- Phenylketonuria (PKU)
- Citrullinemia (Urea cycle disorder)
A 7 year old girl has difficulties gaining weight. The PCP notices lack of weight gain on growth chart. Thorough work-up reveals unknown cause for the poor weight gain. The pediatrician decides to add a calorie-rich supplemental formula to encourage weight gain.
A Case Example

A 7 year old girl with PKU has difficulties gaining weight. The PCP notices lack of weight gain on growth chart. Thorough work-up reveals unknown cause for the poor weight gain. The pediatrician decides to add a calorie-rich supplemental formula to encourage weight gain.

Is this the right approach?
PKU: The First Newborn Screening

Phenylalanine Hydroxylase

Phenylalanine (PHE) → Tyrosine (TYR)

Tetrahydro-biopterin

Dihydro-biopterin

OH

CH₂

NH₃⁺

COO⁻
Phenylketonuria (PKU)

Phenylalanine (PHE) is converted to Tyrosine (TYR) by the enzyme Phenylalanine Hydroxylase. However, in PKU, this enzyme is defective, leading to an accumulation of phenylalanine.

- **Microcephaly**
- **Intellectual disability**
- **Eczema**
- **Musty or “mousy” odor**

Structural formulas:

- Phenylalanine: \(\text{NH}_3^+ \text{CH}_2 \text{CH} \text{NH}_3^+ \text{COO}^- \)
- Tyrosine: \(\text{NH}_3^+ \text{CH}_2 \text{CH} \text{NH}_3^+ \text{COO}^- \)

Chemical formulas:

- Phenylalanine: \(\text{C}_6\text{H}_5\text{CH}_2\text{NH}_3^+\text{COO}^- \)
- Tyrosine: \(\text{C}_6\text{H}_5\text{CH}_2\text{NH}_3^+\text{COO}^- \)
Phenylketonuria (PKU)

Phenylalanine (PHE) → Tyrosine (TYR)

Phenylalanine Hydroxylase

Tetrahydro-biopterin → Dihydro-biopterin

What treatment will you provide?
Phenylketonuria (PKU): Dietary Therapy

- Low protein diet
- PHE-free formula with Tyrosine supplementation
- Close coordination with metabolic dietitian
Phenylketonuria (PKU): Sapropterin

Phenylalanine Hydroxylase

Phenylalanine (PHE) → Tyrosine (TYR)

Tetrahydrobiopterin

Dihydrobiopterin

Synthetic form of tetrahydrobiopterin
Phenylketonuria (PKU): Sapropterin

Phenylalanine Hydroxylase

- Phenylalanine (PHE) → Tyrosine (TYR)

Only a subset of patients respond to this medication.
Phenylketonuria (PKU): Other Treatments in Children

- Dietary therapy
- Sapropterin
- Avoidance of aspartame (*a sweetener that contains PHE*)
- Specialized dietary therapy (*Glycomacropeptide*)
- Investigational treatments

Goal: PHE levels of 2-6 mg/dL to minimize risk for complications
PKU: Care Requires A Team Approach

- Physicians
- Newborn screening laboratory nurses
- Clinic nurses
- Dietitians
- Social workers
- Parents and families
PKU in Primary Care

• Avoid medications with aspartame!

• Consult with geneticist and metabolic dietitian before changing the diet plan

• Encourage adherence to diet plan

• Consult with geneticist and metabolic dietitian IMMEDIATELY if a patient is considering pregnancy or becomes pregnant
Maternal PKU: Infants Born to Mothers With Elevated PHE

- Developmental delay
- Small size (IUGR)
- Microcephaly
- Congenital heart defects

Risk is minimized with PHE level in target range at time of conception!
A 7 year old girl with PKU has difficulties gaining weight. The PCP notices lack of weight gain on growth chart. Thorough work-up reveals unknown cause for the poor weight gain. The pediatrician contacts the geneticist and metabolic dietitian to discuss a plan.
Newborn Screening: *Two examples*

- Phenylketonuria (PKU)
- Citrullinemia (Urea cycle disorder)
3 year old girl with vomiting

- Non-bloody, non-bilious emesis x 2
- No fever, abdominal pain, cough, dysuria
- Review of systems otherwise negative
- Several classmates had a “stomach bug”
- Exam shows no signs of dehydration

- PCP discharges from clinic with an anti-emetic and warning signs for return to clinic
3 year old girl with Citrullinemia and vomiting

- Non-bloody, non-bilious emesis x 2
- No fever, abdominal pain, cough, dysuria
- Review of systems otherwise negative
- Several classmates had a “stomach bug”
- Exam shows no signs of dehydration

- PCP discharges from clinic with Zofran and warning signs for return to clinic

Is this the best approach?
Citrullinemia is included in State Newborn Screening Panel

Urea Cycle

- **CPS** (Carbamoyl phosphate synthetase)
- **NAGS** (N-Acetylglutamate synthetase)
- **OTC** (Ornithine transcarbamoylase)
- **ASS1** (Argininosuccinate synthetase 1)
- **ASL** (Argininosuccinate lyase)

Key Reactions

1. Carbamoyl phosphate \rightarrow Citrulline
2. Citrulline \rightarrow Argininosuccinate
3. Argininosuccinate \rightarrow Arginine
4. Arginine \rightarrow Ornithine
5. Ornithine \rightarrow Carbamoyl phosphate

Pathway

- **NH$_3$** (Ammonium)
- **Urea**
- **Ornithine**
- **Citrulline**
- **Arginine**
Citrullinemia

Elevated ammonia levels damage the brain!
Elevated ammonia levels cause confusion, lethargy, headache, vomiting, coma and death, if untreated!
Citrullinemia and Dietary Treatment

- Carbamoyl phosphate
- Ornithine
- Urea
- Arginine
- Citrulline
- Urea Cycle
- ASA
- ASS1
- ASL

Reduce protein intake, essential amino acid formula
Citrullinemia: Dietary Therapy

- Low protein diet
- Essential amino acid formula/amino acid supplements
 - Close coordination with metabolic dietitian
- Strategies to promote adherence (can be costly!)
Citrullinemia and Medications

Medications that divert ammonia away from the cycle to produce safe waste products
Potential Triggers of High Ammonia in Citrullinemia

- Vomiting
- Illness
- Skipped meals
- Surgery
- Skipped medication doses
- Delivery/post-partum period
- Certain medications
- Menses
- High protein diet/meals
3 year old girl with Citrullinemia and vomiting

- Non-bloody, non-bilious emesis x 2
- No fever, abdominal pain, cough, dysuria
- Review of systems otherwise negative
- Several classmates had a “stomach bug”
- Exam shows no signs of dehydration

- PCP discharges from clinic with Zofran and warning signs for return to clinic

What is a better approach?
Emergency Planning

• Emergency letters:

 * Diagnosis
 * Concerning signs/symptoms
 * Initial steps in evaluation/management
 * Contact information for genetics team

• Emergency letters should be carried at all times and copy placed in PCP chart

• Don’t ignore the emergency letter!
3 year old girl with Citrullinemia and vomiting

- Non-bloody, non-bilious emesis x 2
- No fever, abdominal pain, cough, dysuria
- Review of systems otherwise negative
- Several classmates had a “stomach bug”
- Exam shows no signs of dehydration

PCP notes risk for high ammonia and contacts genetics team
3 year old girl with Citrullinemia and vomiting

- Non-bloody, non-bilious emesis x 2
- No fever, abdominal pain, cough, dysuria
- Review of systems otherwise negative
- Several classmates had a “stomach bug”
- Exam shows no signs of dehydration

Patient admitted to hospital for high ammonia level
Other important considerations in Urea Cycle Disorders

• Avoid prolonged fasting (NPO) and work with genetics/anesthesia for safe anesthesia plans

• Consult geneticist/dietitian before making a diet change or suggesting skipped medication doses

• Avoid steroids and valproic acid medications
Other important considerations in Urea Cycle Disorders

Some urea cycle disorders ARE NOT covered on newborn screen!
Other important considerations in Urea Cycle Disorders

Check an ammonia in any patient with altered mental status of unclear cause!
Summary and Conclusions

- Newborn screening facilitates the early diagnosis and treatment of children with a subset of metabolic disorders.
- All metabolic disorders ARE NOT included on the newborn screen panel.
- Emergency planning is important for some metabolic disorders.
- The care for individuals with metabolic disorders requires a team approach.